
A-ft." lf NMODEL FORA RCHITECTURAL. CONPRAISON(U) WIASHINGTON UNIV 1/1
a SEATTLE DEPT OF COMPUTER SCIENCE S NO ET AL. APR NO

'I 7 UNLSIIDTR-9S-04-01 NDRM-15-K-N72 N

WILRSI ;E
F/0 12/6

Eu.'.'MMMM

44,5

11 11 IN 3,2_ 11 =2

I 4 0

-111110-

1.JI25 1 4 11L11.6

MICROCOPY RESOLUTION TEST CHART

NA [I JNA(6UAU Of SIBANDARDS A

-s u,[fl U. ,) ' 'f .b...A, J.II , i W. : -J . V 4 W , , V , ' ; : ' .-! C: .kA .: r: . , #

' Oll; ILE -UM

unclassified

11ECU11ITY CLASSIFICATION OF THIS PAGE (When Dale Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
RPR BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER '4

- 88-04-01

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Lf)
A Model for Architectural Comparison Technical

S6. PERFORMING ORG. REPORT NUMBER

7. AUTNOR(&) 6. CONTRACT OR GRANT NUMBER(a)

Sam Ho and Larry Snyder MDA 903-85-K-0072
ARPA-4563, #2 code 5D30

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
NW Laboratory for Integrated Systems AREA & WORK UNIT NUMBERS

Dept. of Computer Science, FR-35
University of Washington, Seattle, WA 98195

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA - ISTO April, 1988
1400 Wilson Boulevard 13, NUMBER OF PAGES

Arlington, VA 22209 16
14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Office) 1S. SECURITY CLASS. (of this report)

ONR
Jniversity of Washington unclassified

315 University District Building Isa. OECLASSIFICATION/DOWNGRADING -
I107NE 45th St., JD-16, Seattle, WA 98195 SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this report is unlimited.

17. DISTRIBUTION STATEMENT (of Che abstract erter it different from Report)

C. T.

III. SUPPLEMENTARY NOTES

J.
%

IS. KEY WORDS (Continue on reverse lide if neceseary mid Identify by block number)

Computer architecture, RISC, VAX, CISC, Crisp processor, Ouarterhorse

20. ABSTRACT (Continue on reverse aide If necoeoarY mid Identify by block number)

Recently, architectures for sequential computers have become a topic of much
discussion and controversy. At the center of this storm is the Reduced
Instruction Set Computer, or RISC, first described at Berkeley in 1980. Whil(
the merits of the RISC architecture cannot be ignored, its opponents have
tried to do just that, whiic iL. proponents have expanded and frequently

exaggerated them. This state of affairs has persisted to this day. This
paper attempts not to settle the controversy, since there likely is no one
answer, but to provide a quantitative framework for a discussion of the issue4..

DD , J A, R 1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 0102-LF-014-6601 unclassified.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) %'

z 2

I

A Model for Architectural Comparison

Sam Ho and Larry Snyder

Department of Computer Science
University of Washington

Seattle, WA 98195

Technical Report 88-04-01

:I.

4 Supported in part by DARPA under Contract MDA 903-85-K-0072 and a Minority Affairs Fellowship.

,","'. 207
. .4'

A Model for Architectural Comparison
Sam Ho and Larry Snyder

University of Washington
Seattle, WA 98195

1 Light and Heat
- Recently, architectures for zcquential computers have become a topic of much

discussion and controversy. At the center of this storm is the Redu ed-Istruc-
tion Set Computer, or RISC, first described at Berkeley in 1980f' F0f While
the merits of the RISC architecture cannot be ignored, its opponents have tried
t.o do just that, while its proponents have expanded and frequently exaggerated
them. This state of affairs has persisted to this day. This paper attempts not to
settle the controversy, since indeed there likely is no one answer, but to provide
a quantitative framework for a rational discussion of the issues.r--hrt this paper, 'we seek to shed some light on this topic. The model x4.pzezt/1r

takes an architecture and a computation. It has the following features.

Quantitatively measures an architecture.

E Examines an architecture working on a computation.

a Separates the overall computation into logical pieces.

- Determines from the architecture how long each piece takes.

ii Considers how much parallelism is available.

4 Compares the results with other architectures. .-

While the early Crisp processor [D87] and the IBM 801 [R82] embodied
similarly small instruction sets, the controversy began with Patterson's paper,
"The Case for a Reduced Instruction Set Computer." [PD80] In this paper, he C
extolled the virtues of a smaller, simpler instruction set, as opposed to the large INPECTW

and complex instruction set typified by the VAX architecture. Unfortunately, he
also impugned the motives of the designers of such architectures, by suggesting
marketing strategy to be the moving force behind the choice of instruction set. For
The designers of the VAX rose to the bait, and papers and articles of either
persuasion began to pour out.

The problem with these arguments was that they were not speaking of the 48 0
same things. Each writer, quite naturally, chose examples that most supported :ed 0
his own view. The opposing writers, then, chose different examples with different
results. On top of that, the RISC I chip from Berkeley contained an essentially
unrelated piece of hardware, that of multiple overlapping register sets The

'Supported in part by DARPA MDA90-85-K.0072 and Minority Affairs Fellowship

% - ... %

' p

a. a.;.-. ._ __

early papers on RISC often combined the effects of the register set and the

instruction set with little regard for their relationship, which was tenuous, at
best. When the RISC I chip turned out to have an error that caused it to run
extremely slowly, it provided no vindication for the proponents of the CISC,
since the problem had nothing to do with the complexity of the instruction set.

The model presented here is an attempt to provide a common quantitative
basis for a discussion of this and other architectural questions. It is important
to remember that a model will not, and is not intended to, settle a question
once and for all. Instead, given a task, and several processors differing in some
of their parameters, it provides a numerical basis to compare the results with
the results from other possible sets of parameters. This dependence on the
example cannot be ignored, and reflects the truth that the performance of any
system depends greatly on what it is being used for, as compared to what it
was designed for. It is unreasonable to expect a Lisp machine to perform matrix
inversions efficiently, or conversely, to expect a matrix processor to execute Lisp
well.

Another key point is to keep the comparison simple. If there are two or
more changes between the two architectures being compared, the results from
the model will reflect their combined effect. This is fine, if the changes are
closely related, but it will lead only to confusion if the changes are not related.

2 A Model of Computation

In this model, we will define what a unit of computation is, and how long those
units take to execute. To start with, we need a computer to examine. The
definitions below hold true for a general computer, with an arbitrary instruction
set and hardware capability.

In some of our examples, we will use the QuarterHorse, a 32 bit rnicropro-
cessor designed at the University of Washington that bears close resemblance
to the Berkeley RISC, except that it is microprogramrmed.

2.1 The Processor
The Functzonal units are the basic blocks of the dlatapath of the processor.
That is, they are such things as registers, shifters, arithmetic units, multipliers
and the like. They act on the data being processed in the processor in some
way. Registers do not, strictly speaking, act on the data, but the perform the
"function" of making the data available to the other units. One way to change
a processor is to change the functional units.

The Control portion of the processor determines what actions the functional
units execute, and when they do so. On many commercial processors5, this
is a read-only memory containing microinstructions fcr a microprogram. On

2

0" I op r

other processors, particularly microprocessors, it is a collection of logic spread
throughout the chip. The Berkeley RISC is one such processor.

Again, in any given comparison, only one of the functional units or the
control should be changed. If there are several changes, it is difficult to separate
the effects of the various changes. As an example, the RISC has a smaller
instruction set than the VAX. In addition, the RISC has hardwired control,
while the VAX is microprogrammed. On top of all that, the RISC has multiple
register sets, but the VAX does not. With so many changes, it is not surprising
that there is so much dispute on the merits of various aspects of the RISC.

2.2 The Calculation

Now that we have a computer, we need to give it a problem to work on. The
problem (or family of problems) we choose will be called the Calculation. This
choice is crucial to the evaluation we will perform, since the calculation deter-
mines which operations are likely to be executed, and worth optimizing for.

For example, computing a matrix product will bias the results towards pro-
cessors which can multiply quickly, while running an operating system which
does frequent block input will bias the results towards a processor with a block
movement instruction. This bias is not inherently wrong. It is quite reasonable
for any given processor to do well on some tasks but poorly on others. Indeed,
it is a wise choice to design a processor with knowledge of its intended applica-

* tion, and to optimize its operation for a specific class of problems. A processor
designed to do everything will likely not be outstanding in doing any one thing.

In the examples below, we will use a fairly generic arithmetic computation,
that of computing the greatest common divisor of two integers, to illustrate the
point.

From this calculation, a compiler generates a set of data dependencies, and
the transformations of the data as they pass through a graph. That is, it
generates a dataflow graph for the calculation, with each node of the graph
corresponding to some action being performed on the data. How this graph is
produced is more of a topic for writers of compilers, and will not be discussed
in this model.

The computation of the greatest common divisor can be represented by a
graph, where the nodes are such operations as subtractions and comparisons.
Unfortunately, this example is somewhat too simple, as it does not allow any
room for parallelism, in the form of branches in the graph.

1. If the first number is larger than the second, exchange them.

2. Subtract the first number from the second.

3. If the difference is not zero, return to step one, using the first number and
the difference. Otherwise, we have the answer.

3

" UP y W -6 -WC4

Nn _r Nq'

NVWL dW

.34711W

A ~ '' ~ - '~ .M J 9 1 V ' ~

The steps of this algorithm correspond to the nodes of the graph. In each step,
we perform one operation.

In the more general case, there would be steps that do not depend on each
other. For these steps, it would not matter if one were executed first, or the
other, or both simultaneously on a parallel processor.

We shall restrict ourselves to sequential processors, and so, where the cal-
culation does not determine an ordering, we shall impose one. The linear ar-
rangement of actions will be called the Sequence, denoted S. Construction of
the sequence is also commonly done by the compiler. 11

Now that we have defined the sequence of actions to take in performing a
calculation, we need to define these actions.

In the GCD example above, the natural set of actions would be subtraction,
exchange, and conditional branch, along with the more housekeeping activities
of operand and instruction fetches, decode, and operand storage. These are
simple actions because this is a simple calculation.

Since our model concerns itself with how long these actions take to execute
on various processors, we must choose the actions carefully. If the actions are
too small, larger-scale optimizations will affect sequences of actions instead of
single actions, and we will not be able to model them. On the other hand,
actions that are too large mean that we will have an unmanageable number of
actions, each of which is affected in the same way by the same change.

2.3 Action
We define the Action to be the fundamental unit of computation. What it is
is restricted by the conditions above, and by the experiment we are examining.
For example, if we are considering the effect of a multiplier on the processor,
multiplication should certainly be an action. However, if we are considering
the effect of overlapping register files, there is no compelling reason to make
multiplication an action.

When we have decided on the set of actions we will refer to it as C.
In the example above, we describe the second half of the set of actions as

housekeeping. This distinction is worth noting, since we do not want to have the
processor spend all its time on such ancillary activities, but rather on actions
with some bearing on the calculation.

The Overhead actions, which we will denote as C0, are just those actions
which do not contribute to the calculation, but need to be executed anyway.
These are usually instruction fetches, decodes and the like.

The remaining actions are Computational. These actions, denoted Cc, are
actually part of the sequence associated with the calculation In general, arith-
metic and comparisons will fall into this category.

In addition, even among computational actions some of them are WVasted.
These actions are computations that do not do anything towards the overall
calculation, but are executed anyway,4 for lack of anything better to do, or

* ' .. '~~4

because a limitation in the instruction set requires its execution in order toI
perform some other activity.

In RISCs, such problems are generally caused by a limited overall clock
structure which allocates time for an arithmetic operation whether it is wanted
or not, and having the ALU to serve as the only channel between the input and
output ports of the registers. An example is the RISC 1, which insists on an
addition when a register to register move is desired.

The remainder, and hopefully majority of the actions are Useful. These are
the actions that do contribute to the calculation.

2.4 Time

And now, we need to see how long it takes for a processor to execute these
actions. We measure time in basic units, which are Cycles of a master clock.
This virtual clock does not necessarily correspond to the actual system clock
of the processor, because some processors, particularly those with hardwired
control, divide the incoming clock into many parts for different actions, while
other processors, to prevent race conditions, use various arrangements of several
clocks in what is really one cycle.

On microprogrammed processors, it is easier to determine what a cycle is,
since the clock rate of the microprogram is generally the right measure for a
cycle. The QuarterHorse falls into this category.

The key to the model is the mapping of each action to the number of cycles
it needs to execute. We assign to each action a fixed cost which is the time,
in cycles, needed to execute it. Generally, this will be a small integer, such
as one or two, but it could be quite large, for more complex actions, such as
multiplication, or of medium size, for actions of intermediate complexity. It is
also quite comrmon to have the carry chain for additions and subtractions take
a slightly larger number of cycles than logical operation which do not Involve a
carry.

Finally, we can multiply the cycle by the Clock Rate, the time needed for
one cycle, to get the time. In most cases, we can ignore this step, since the
architectures in the experiment will have the same clock rate, but sometimes the
clock rate is noticeably affected by the architecture. As an example, proponents
of the RISC frequently claim that adding instructions to an architecture will slow
it down. While the model cannot verify this claim, if it is true and measurable,
we can take it into account.

2.5 The Interesting subset

Since the differences between the processors in any given experiment should he
small, to avoid the mixing of effects warned about earlier, the majority of the
actions will have identical numbers of cycles in their implementations inl thte two
processors. To reduce the difficulty of computing the effects of the change, and ;

5

to see how much of the calculation is affected at all by the modifications, we
can separate the actions into two categories.

The Interesting actions are those which are in some way different between the

processors. The remaining, unchanged, actions are called Common. Then, the
fraction of the cycles attributed to interesting actions is a measure of how much
the modification affects the processor. Furthermore, the change in the overall

* time of the calculation is equal to the fractional change for the interesting actions
multiplied by the share the interesting actions have in the overall computation.

2.6 Parallelism

While we are discussing sequential processors, we cannot entirely ignore paral-
lelism. In particular, at the level of the action, even sequential processors allow
some parallelism. This is, for example, why many processors have two data
buses, allowing two operands to be simultaneously fetched, or even three buses,
allowing yet another operand to be stored at the same time. Alternatively, ac-
tions that do not depend on each other can also proceed in parallel. This type
of parallelism typically occurs between the instruction stream and the execution
stream, in the form of prefetch buffers.

The Maximum Parallel Set of a processor is the set, P, of all the actions it
can perform simultaneously. More strictly, P = C, x . .. x C,, the Cartesian
product of several sets of actions. This notation means that in any given cycle,

* each one of the C, can have an action in progress. The Maximum Parallelism
is n, the largest number of actions that could conceivably be executing at one
time. Sometimes, we will also use this cross product notation to denote cases
where we want to point out that one specific group of actions that may execute
in parallel with the rest. In such cases, the C, may themselves have further
structure. When that is the case, the maximum parallelism is the dimension of
the maximal parallel set, and not just the visible portion with which we concern
ourselves.

3 Derived Numbers

3.1 Derived Numbers in Time

the tmt e hv oe fwa the processor is taking.cn omin ti
w thae avatodewa the processor is dororing, we e qancomin thiscto
th thmecacto the processor is efriggogtqaniistatrfeto

The Length of the calculation is the number of cycles needed for the processor
to perform the calculation. This is not quite adding up the actions performed

in the calculation and multiplying by the appropriate number of cycles for each
action, because we have actions that can proceed in parallel. During such times,
we can, in the time of one cycle, be working on more than one action.

6

1.7.

The Time of the calculation is the length, which is expressed in cycles, of the
calculation multiplied by the cycle rate, giving a value in units of time. Clearly,
the less time it takes for the calculation, the faster the processor. In most cases,
we will deal with the length, rather than the time, of a calculation, and assume
that whatever the clock rate is, it is the same for the processors we examine.

The Efficiency of the processor is the ratio of the length of the calculation
to the number of actions in the sequence of the calculation. That is, it is the
number of cycles needed to execute, on average, one useful action. This number
is somewhat misleading, since it depends on what we chose as the actions, but
among processors within one comparison, where the set of actions is the same,
it provides a measure of how well the processor is doing, which is normalized
for the size of the various calculations within one famnily.

3.2 Derived Classes of Processors

Within the general framework of processors defined previously, we can point out
several interesting types of processors.

Any description of the controversy between the RISC and the CISC would
be incomplete without an attempt at defining the differences between them.
These differences, however, do not all fit within the realm of this model. In
k),trticulat, the issue of tht; complexity o-f the ccntrc-l is difficult to quanitify.
Thus, the question of whether design time and chip area would be better spent
on some other optimization is left unanswered. Also, we cannot determine how
much, if at all, faster the clock rate of a RISC would be, compared to the CISC
implemented in equivalent technology, although if we accept the claims of some

* other person as to what this difference is, we could incorporate it into the model.

3.2.1 RISC and CISC

A RISC is an architecture with few actions, either overhead or computational,
in each instruction, and a small number of total instructions. To some extent,
whether a processor can be considered to be a RISC depends on the calcula-
tion, since the calculation determines the choice of actions. As an example, an
instruction with floating point support in its instruction set would be a RISC if

* the calculation performed floating point computation, making the floating point
operations a basic action. If the calculation did not perform such operations,
the processor would then be carrying considerable excess baggage, and would
be harder to justify as a RISC.

A CISC, by contrast is the opposite of a RISC. This processor has more
instructions, and each of which performs more actions. The usual example
of this is the VAX, which has over two hundred instructions, performing such
varied tasks as manipulation of doubly-linked lists, and about a dozen addressing
modes, which may involve up to three memory references and two additions and

~ -u w -- 7

.4.

shifts for each operand fetched. This means that each instruction invokes more
computational, but also more overhead, actions.

We earlier defined the classes of possible parallelism. Now, we point out some

common types of parallelism within a processor. These are, by no means, the

only ways in which parallelism is possible, but they are the ones most frtrquntly
used in what are basically sequential processors

3.2.2 Instruction Prefetch

Instruction Prefetch is the technique of fetching the next instruction to be ex-

ecuted while the current instruction is still executing. Symbolically, if we call
Cflth the set containing the action or actions necessary for an instruction fetch,
and CotheT the set containing the remainder of the possible actions, then the
maximum parallel set P = Cfetch x Corals. In such a processor, we can effec-
tively discount the time necessary for instruction fetches from the overall time of
the calculation. The RISC processor fetches one instruction ahead, while more
complex processors, such as the VAX, typically fetch several bytes ahead, and

provide them as needed to the instruction decoder.

3.2.3 Pipelining
Pzpehning is the technique of sequentially partitioning the actions in an in-

struction into several classes, each of which can execute independently, but in
order. Each step requires the same number of cycles to execute, so that several

instructions in various stages of execution can be simultaneously processed.
The MIPS processor is pipelined. This processor divides its instruction pro-

cessing into three stages. The first is instruction fetch and decode, the second

operand decode, execution and store, and the third operand load. The processor
is arranged so that one action from each of these classes can be executing at
any given cycle. That is, if we call the first class Cfth, the second C, and
the third Cload, the parallel set P = Cftch X Cez X Cload.

In the more general case, there can be many stages in the pipeline, and many
instructions can be simultaneously in their respective states of execution.

4 Some example results

4.1 Block movement

A Block Move is the copying of a significant quantity of data from one location
to another, with minimal change. In applications such as operating systems,
block moves frequently result from the transfer of information from a buffered

device to the user's address space. For such devices as disk and tape drives,
this can mean moving a thousand bytes of data at a time In applications such

as these, where such block movement is common, having such an instruction
available will save a considerable amount of time.

In Clark and Levy's paper, [CL82] where the example instruction load con-

sisted of an interactive operating system, such moves occurred frequently. Here,
(Multiuser/All modes) the highest ranked, by time, instruction was the MOVC3
instruction, which is the b!ock move instruction, consuming 13 percent of the
total time. By frequency of occurrence, however, it was less than one percent
of the instructions. In fact, in this benchmark, the average block move was of
20 words.

To analyze the costs of implementing the move in various ways, let us assume
that each instruction executed incurs one overhead action for the decode, and
each word moved incurs one computational action. Furthermore, subtraction
and branch are also each computational actions. We assume that prefetching

hides the cost of instruction fetch, except after a branch. Further, let all of these
actions require one cycle each to execute.

In the architecture with such a block move instruction, we see that a block

move of 20 words is implemented with a single instruction. This instruction
incurs one decode and twenty moves, for a total of 21 cycles.

Cycle
Time = (Decode 4- 20 * Move) * 1 = 21

Action

Now let us considt.: the architecture without a block move. If the equiva-
lent operation were implemented by unrolling the instruction into a number of
individual moves, we then have twenty decode actions as well as twenty move
actions. In a strictly sequential machine, except for the instruction prefetch, we
would then require 40 cycles to do the same thing.

-- " Cycle
Time = 20 * (Decode + Move) * 1 - 40

*. Action

However, the decode of one instruction can go in parallel with the move of
.- the previous word. In this case, we have the pipeline (Pref etch --)Decode -.

Execute. Here, except for the first word, on each of the twenty following cycles,
we complete one move at the same time as the decode for the next move, for
a time of 21 cycles. In this case, '1he pipelining allows the block move to run
as fast as it would if there were a special instruction for it. Even so, there is
still a twenty-to-one space penalty for the unrolled instructions versus the single
instruction.

Time = (Decode + 19 * (Decode \ Move) + Mote) = 21

If, instead, the move were implemented as a tight loop, the space penalty
would be minimal, but there would be a time penalty. In this case, let us
examine the replacement sequence

* Move word

* 9

N YZ'

" Decrement counter

" Jump if not zero

In this case, even assuming that the branch at the end disrupts the pipeline
only for the loop exit, we see that each time through the loop requires three
cycles, and outside the loop we have a cycle for decode at the beginning, and
two cycles for fetching and decoding the instruction after the loop, to repair
the pipeline disruption. This makes a total time of 63 cycles. Here, pipelining
cannot make up for the loss of the special instruction.

Loop = Move + Decrement + Jump = 3.

Time = Decode - 20 * Loop + 2 * Repair = 63.

4.2 Operand Address Modes

One of the characteristics of a RISC is the small number of address modes
Most RISCs have a load-store architecture, in which fetching data from ex-
ternal memory is separate from the computation involving that data. These
are instruction sequences of the form Load A followed by Add A (from reg-
ister). The alternative is called memory-to-memory. Here, the computational
instruction is allowed to reference data from memory directly: AddM A (from
memory). If we make the assumption that the two instructions Load and Add
require one more cycle of overhead than the single instruction AddM, we dis-
cover that the load-store machine requires one extra cycle each time on operand
is referenced from memory. If we let LMM be the length of the calculation on
the memory-to-memory machine, and LLS be the length of the same calcula-
tion on the load-store machine, and NS be the number of operands fetched from
memory, then we find that LLS = LMM + Ns.

In Wiecek's paper, [W821 just over 55 percent of the total operand references
are to immediate or register data, and thus do not reference memory. Almost all
the rest refer to memory once, with virtually none referring to memory twice
Since this same paper also indicates that 1.74 operands are referenced in the
average instruction, multiplying this by the 45 percent of operands that reference
memory produces 0.96 data memory references in each instruction. If, as we
stated above, each such reference costs an additional cycle in the load-store
machine, this means that having these memory reference modes saves almost
one cycle for each instruction.

4.3 Floating point

Another case where a few instructions can make a major difference in the :om-
putation is that of floating point operations Floating point operations require
a large amount of time to execute, so many processors have spe,:ial hardware

U- 10

A

to assist in this computation. In such processors, the control of the processor
has little bearing on this portion of the calculation, since we have a functional
unit to do all of the work. If we give up this functional unit, we will need to
emulate floating point operations with an equivalent series of additions, shifts
and other operations available to us with the functional units we chose. Typi-

cally, just these actions will require on the order of ten times as much time as
a well-designed floating point coprocessor.

In the system described by Clark and Levy, [CL82] which has a floating point
processor, the time spent in floating point multiplication, TFP is 3.5 percent of
the total t ime used in the workload. The remaining instructions, then, account
for the other 96.5 percent Tlthr of the time.

Time = TFP + Toth, = 3.5 + 96.5 =100.

If we say that deleting the floating point hardware assistance will increase this
time by a factor of ten, that increases the time fraction of the instruction from
3.5 percent to 35 percent of the original computation. The other instructions,
of course, are unchanged.

Time =TFP + Tolh,~ = (10 * 3.5) + 96.5 = 131.5 i

If we take our previous assumption that an unpipelined RISC will break each
action into a separate instruction, each with one cycle of overhead, as well as
the cycle of computation, we now have ten cycles for overhead, as well as ten
cycles of computation for the equivalent floating point operation.

Time =TFp + Tth, =e (20 * 3.5) + 96.5 =166.5

With these assumptions, using a RISC processor for an unpipelined machine
without hardware floating point support more than doubles the cost of not
having such support, as compared with a machine with single instructions for
floating point operations.

4.4 The CRISP processor: an example architecture

The Crisp processor was designed at Bell Laboratories for the efficient execution
of C programs. It embodies many of the same ideas the RISC processor from
Berkeley. However, it includes some special features, which will will describe
briefly below.

The first idea is the stack cache. This cache allows dynamic choice of which
variable to keep locally and which to keep in external memory, The idea is that

the most frequently referenced variables will be at the top of the stack, and thus
in fast registers, while less often used material is in external storage

Here, based on numbers from the Crisp paper "Register Allocation for Free",
are numbers for the register activity on a VAX The basic numbers are t) 77

11 9

memoty references actions per instruction for the standard VAX, 1.34 for a%
VAX without registers, and 0.24 for a VAX with Stack Cache registers. These
then are divided by the ratio of rmemory reference time to overall time to produce
a number for the time saved. That is, if we let N be the number of instructions,
and NM be the number of memory references, for the standard VAX, NM
0.77N, for a VAX making no use of registers, NM = 1.34N, and for the Stack

A Cache version of the processor, NM = 0.24N.
By contrast, the Wiecek paper gives 1.18 memory references per instruction

and 1.8 register references per instruction. This results in total data references
of 3.0 per instruction. Note here that the register usage count includes refer-
ences to FP and AP, the frame and argument pointers. Another count, that
of operands per instruction, gives a total of 1.8 operands per instruction, some
of which, reference both memory and registers one or more times. These are
the displacement operands, which reference both register and memory. Also,
the displacement deferred operands refer to registers once, and memory twice.
Adding the indexed modifier adds yet another reference for each of registers and
memory, for a possible maximum of two register references and three memory
references in a single instruction.

These differences can, in part, be attributed to differences in what is being
measured. In fact, an accurate evaluation of branch folding requires the the
measurement of memory usage be reasonable. Clearly, from these data, the
instruction mix can greatly affect, here by a factor of two, the number of memory
references in a processor.

In addition, even with the same instruction mix, determining which instruc-
tions can eliminate memory references by using a Stack cache can be difficult.
The VAX does not distinguish in its instruction set which operands are stack-
able, and so, we must guess at which operands these are. In particular, the
displacement operands are frequently used for all of stack, global, argument,
local, and indirect operation. Sorting these apart is a major task.

Another aspect of the Crisp processor is branch folding. This optimization,
which presupposes accurate branch prediction, allows branching in the preferred
direction to be eliminated during the prefetch stage.

Here, this allows taken branches to be optimized from a typical one cycle to
zero. Since branches occur every four instructions or so, in Wiecek, this can be
a major saving of computation time.

Evaluating Branch folding is somewhat easier. In the simplest case, without
using branch spreading, there is a saving of a cycle, or the entire fetch and
execute pair in the pipeline, when a branch goes in the preferred direction.
Thus we need only to count the number of branches executed and the fraction
in the correct direction to get an estimate of the savings.

By applying these numbers to the one-cycle saving for each correctly pre-
dicted branch, we have another test for the value of folded, but unspread,
branches.

The effect of branch spreading is similar to that of the earlier techinique of

12

delayed branch. Both allow additional cycles to be saved if the branch and
the comparison on which it relies can be separated by a few instructions to be
executed unconditionally. Finding such instructions is the task of the compiler,
and, as such, depends both on the details of the optimization in the compiler and
the problem being examined. The RISC group at Berkeley has also published
claims about the value of the delayed branch.

4.5 The RISC and the CISC

As we well know, this dichotomy has attracted much debate recently. This is
an attempt to consider the claims of each side in the framework of the model.
As such, it measures only those things which are within the view of the model,
and not other effects we have seen claimed. Here we use the same simple model
of the RISC we have used above. In this model, the RISC has exactly as many
cycles of overhead as of computation, and they alternate. Furthermore, each
instruction has exactly one computational action in it. In this case, the RISC
will use two cycles for each useful action, since every computation is useful,
and is accompanied by a cycle of overhead. Numerically, if Nu is the number
of useful actions in the calculation, the number of wasted actions Nw = 0, so
the total number of computational actions NC = NU. The number of overhead
actions No = Nc, giving a total of 2NCr actions. We assumed hat each action
take one cycle, so there are 2Nu cycles to do Nu useful actions. This leaves the
efficiency E = 1/2.

On the other hand, the CISC needs to have more cycles of overhead, but if
it can also get more cycles of computation. Furthermore, some of the actions
in the CISC may be wasted, if the instruction packages more actions than are
necessary Here, the efficiency is equal to the number of useful actions divided
by the total number of cycles. This means that if all actions take one cycle,
the total number of cycles L is equal to twice the number of computational
cycles N-, which is equal to the wasted actions Nw plus the useful actions Nir.
L= 2Nw + 2Nu. The efficiency E is• "U'

5 Conclusion

This model is not an answer for all the arguments that have gone by in archi-
tectural discussion Instead, it is a basis for fair and reasoned discussion. We
have seen how to:

* Describe an architecture quantitatively.

o Identify where architectures differ

* Remove irrelevant or unrelated factors

o Separate logical actions from the implementation

13

V ,

I

* Determine how much time each action consumes.

While it is true that honest differences of opinion will always remain, and all
bias can never be removed, a clear separation of the parts of an architecture and
their effects on overall performance will help prevent one aspect of a processor
for erroneously receiving credit for what properly must be ascribed to some other
part or effect. When there is a quantitative basis for evaluating architectures,
is easier for discussions to shed more light and less heat.

6 References

1. Berenbaum, Ditzel, McLellan. The Hardware Architecture of the CRISP
Microprocessor. 14th Symposium on Computer Architecture June 1987.

2. Clark, D., Levy, H. Measurement and Analysis of Instruction Use in the
VAX 11/780. 9th Symposium on Computer Architecture April, 1982.

3. Colwell, Hitchcock, Jensen, Sprunt, Kollar. Computers, Complexity and
Controversy. Computer Sep. 1985, p.8

4. Ditzel, D., McLellan, H. Register Allocation for Free: The C Machine
Stack Cache. Symposium on Architectural Support for Programming Lan-
guages and Operating Systems. p.48 1982

5. Ditzel, D., McLellan, H. Branch Folding in the CRISP Microprocessor:
Reducing Branch Delay to Zero. 14th Symposium on Computer Architec-
ture June 1987.

6. Fitzpatrick, Foderaro, Katevenis, Landman, Patterson, Peek, Peshkess,
Sequin, Sherburne, VanDyke. A RISCy approach to VLSI. VLSI Design.
Fourth Quarter 1981.

7. Ho, Jinks, Knight, Schaad, Snyder, Tyagi, Yang. The QuarterHorse: A
Case Study in Rapid Prototyping of a 32-bit Microprocessor Chip. IEEE
Internattonal Conference on Computer Design: Very Large Scale Integra-
tion, p.161, 1985.

8. Katevenis, Sherburne, Patterson, Sequin. The RISC II Micro-Architec-
ture. VLSI 83.

9. Patterson, D. A RISCy Approach to Computer Design. COMPCON
Spring. 1982

10 Patterson, D. Reduced Instruction Set Computers Communications of
the ACM 28,1 1985.

14

.u,

.1

11. Patterson, D., Ditzel, D. The Case for the Reduced Instruction Set Corn-
puter. Computer Architecture News 9,3 p.2 5 1980

12. Patterson, D., Sequin, C. RISC I: A Reduced Instruction Set VLSI Com-
puter. 8th Symposium on Computer Architecture, p. 4 4 3 1981

13. Przybylski, Gross, Hennessy, Jouppi, Rowen. Organization and VLSI Im-
plementation of MIPS. Journal of VLSI and Computer Systems 1,2. 1984

14 Radin, G. The 801 Minicomputer. Symposium on Architectural Support

for Programming Languages and Operating Systems. p. 39 1982

15. Wiecek, C. A Case Study of VAX-11 Instruction Set Usage for Compiler
Execution. Symposium on Architectural Support for Programming Lan-

guages and Operatzng Systems. March 1982.

t

.5,

15

Aru a -i - --7,

